Molecular Simulation of Carbon Dioxide Adsorption in Chemically and Structurally Heterogeneous Porous Carbons

نویسنده

  • C. M. Tenney
چکیده

Capture of carbon dioxide from fossil fuel power plants via adsorption and sequestration of carbon dioxide in unmineable coal seams are achievable near-term methods of reducing atmospheric emissions of this greenhouse gas. To investigate the influence of surface heterogeneity upon predicted adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Carlo simulation for CO2 adsorption in slit-shaped pores with underlying graphitic structure and several variations of chemical heterogeneity (oxygen and hydrogen content), pore width, and surface functional group orientation. Adsorption generally increased with increasing surface oxygen content, although exceptions to this trend were observed on structurally heterogeneous surfaces with holes or furrows that yield strongly adsorbing preferred binding sites. Among the heterogeneous pore structures investigated, those with coal-like surfaces adsorbed carbon dioxide more strongly than planar, homogeneous graphitic slit pores of comparable width. Electrostatic adsorbate–adsorbent interactions significantly influenced adsorption onto model surfaces. 2006 American Institute of Chemical Engineers Environ Prog, 25: 343–354, 2006

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Carbon Molecular Sieves by Chemical Vapor Infiltration of Lignin Based Microporous Carbons

In a previous work we studied the influence of heat treatment on the molecular sieve properties of activated carbons prepared by chemical activation of lignin [1]. The thermal treatment modified the porous structure of the activated carbons, giving rise to solids that separate C6H6 from C6H12, CO2 from CH4 and O2 from N2 with a relative high selectivity. However, the heat treatment drastically ...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping.

Highly porous nitrogen-doped activated carbons (NACs) were prepared by the chemical activation of chitosan using alkali carbonates. The NACs exhibited extremely high CO2 capacities of 1.6 mmol g(-1) (15 kPa) and 4.9 mmol g(-1) (100 kPa) at 25 °C. Nitrogen atoms doped into carbon frameworks clearly enhanced CO2 adsorption at low partial pressures.

متن کامل

Computer Simulation of Chemical Reactions in Porous Materials

TURNER, CHRISTOFFER HEATH. Computer Simulation of Chemical Reactions in Porous Materials. (Under the direction of Keith E. Gubbins.) Understanding reactions in nanoporous materials from a purely experimental perspective is a difficult task. Measuring the chemical composition of a reacting system within a catalytic material is usually only accomplished through indirect methods, and it is usually...

متن کامل

Sustainable porous carbons with a superior performance for CO2 capture

Sustainable porous carbons have been prepared by chemical activation of hydrothermally carbonized polysaccharides (starch and cellulose) and biomass (sawdust). These materials were investigated as sorbents for CO2 capture. The activation process was carried out under severe (KOH/precursor=4) or mild (KOH/precursor=2) activation conditions at different temperatures in the 600-800oC range. Textur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006